在一些生物光学成像中,为了使特定器官或组织形成能够分辨的图像,往往会使用造影剂(Contrast Agent)。然而一般的造影剂在病灶部位聚集相对较少,反而在网状内皮系统(Reticuloendothelial System,RES,如肝脏、脾脏等)大量聚集,使成像存在较高的背景噪音,成像效果大打折扣甚至会影响诊断的结果。通过纳米粒子的高渗透长滞留效应(Enhanced Permeability and Retention,EPR)和体内组装虽然能够一定程度上提升造影剂在肿瘤、炎症部位的聚集,但网状内皮系统中的浓度仍然较高。
在此背景下,Zhao等人创新性地使用镧系元素上转移纳米粒子与近红外二区(NIR-II)纳米探针两者在体内的可控组装与分解,在提高信噪比的同时,延长了其在肿瘤部位的滞留时间。为手术的实时成像提供更为清晰、可靠的方案。
该造影剂由两部分组成:1、β-环糊精(β-CD)修饰的下转移纳米探针(DCNP@β-CD),能够在808 nm的近红外激发光照射下,产生1060 nm的近红外二区(NIR-II)荧光,进行生物成像;2、偶氮苯修饰的镧系上转移纳米粒子(UCNP@Azo),能够在980 nm的近红外激发光照射下,产生365 nm的紫外发射光,使得修饰的偶氮苯发生异构化,由较为稳定的反式(trans-isomer)转变为能量较高的顺式(cis-isomer)。当UCNP@Azo 以反式存在时,能够与DCNP@β-CD组装,形成平均粒径达485 nm的纳米簇;而当UCNP@Azo 以顺式存在时,无法与DCNP@β-CD形成稳定结合,荧光强度大大降低。
图1:UCNP@Azo与DCNP@β-CD的组装(左)与分解(右)示意图
在实际使用过程中,作者发现相对于将UCNP@Azo与DCNP@β-CD同时注射,先注射UCNP@Azo,过一段时间后再注射DCNP@β-CD得到的荧光强度更高。做系统性对比后得出结论,间隔时间为10 h时,荧光强度达到更大。
图2:在注射UCNP@Azo后10 h再注射DCNP@β-CD与同时注射两种试剂得到的a)荧光强度对比;b)信噪比对比
同时,可以对作为背景的器官以980 nm的红外光进行照射,降低该器官内的荧光强度,从而提高信噪比。在文章中,作者也对何时照射980 nm近红外光进行了考察。以注射第二种制剂(DCNP@β-CD)为时间原点,在固定两种制剂的注射间隔为10 h后,分别在不同时间点,甚至多个时间点和注射间隔期内进行980 nm的红外光照射,发现在注射第一剂(UCNP@Azo)后9 h时进行照射,将大程度提高信噪比。
图3:UCNP@Azo与DCNP@β-CD实际操作方式:注射UCNP@Azo、注射DCNP@β-CD并用980 nm近红外光对作为背景的器官或组织进行照射、用808 nm近红外光成像
图4:以注射第二种制剂(DCNP@β-CD)为时间原点,在固定两种制剂的注射间隔为10 h后,于不同时间点进行980 nm近红外光照射得到的背景强度对比
在文章的最后,作者也描述了两种成分的组合将延长在机体内的滞留时间,使得能够进行手术的高信噪比窗口达到了6 h。这无疑为手术成像提供了更多潜力,相信在不久的将来,这项技术能够用于增强生物成像、治疗或其他需要在肿瘤部位聚集大量造影剂的应用领域。
参考文献:
[1] Zhao M, Li B, Wang P, et al. Supramolecularly Engineered NIR‐II and Upconversion Nanoparticles In Vivo Assembly and Disassembly to Improve Bioimaging[J]. Advanced Materials, 2018, 30(52):1804982.
锘海 SWIR 1.0 近红外二区活体荧光成像系统采用低噪声和高灵敏度的进口InGaAs CCD,结合动物气体麻醉装置及便捷的操作界面,实现实时荧光信号成像。通过镜头切换,可分别完成宽场和局部放大成像,具有较高的荧光信号采集能力。高帧频不仅可以实现单幅图片采集,更可以完成视频拍摄,帮助您捕获整个实验过程。
锘海-近红外二区小动物活体成像系统
近红外二区小动物活体成像 —— 稀土纳米颗粒协助肿瘤切除手术